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Wolfgang Hoschek*
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Abstract

We study physical database design for OLAP
range queries. A useful DBMS should sup-
port the continous spectrum from low to high
dimensional range queries with small to large
selectivities operating on low to high cardinal-
ity attribute domains, a nontrivial problem.
A set of heuristics is collected: multidimen-
sional indexes are good for queries on most
of the indexed dimensions, clustered files are
good for queries on few dimensions, lossy com-
pression can be useful for pruning, as well as
other heuristics. We then suggest judiciously
combining these observations with the state of
the art in multidimensional indexes, bitmap
indexes, lossily-compressed indexes, and oth-
ers, to provide a design that supports a broad
variety of range queries. Our technique is a
hybrid composed of a variant of the extended
pyramid tree, columnwise clustering, minmax
based lossless and bin based lossy compres-
sion. This combination offers advantages over
individual indexes, as the advantages of each
structure can be multiplied.

1 Introduction

On-line analytic processing (OLAP) applications like
scientific and commercial data exploration, knowledge
discovery and data mining frequently use range queries
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to select objects of interest from massive high dimen-
sional object sets stored in data warehouses. A number
of properties distinguish OLAP object sets from object
sets used in traditional On-line Transaction Process-
ing (OLTP) applications. First, OLAP object sets can
contain very large amounts of objects, easily in the
range of 10% to 10'° objects. For example, the high
energy physics experiment CMS [CMS96] at CERN
will record objects derived from proton-proton colli-
sions observed in a particle detector. An expected
number of 10° objects per year will be accumulated
over a lifetime of 15 years. Second, OLAP object sets
are typically high dimensional. Their objects consist
of dozens, hundreds or even thousands of attributes
(dimensions). For example, in Y2K the COMPASS
experiment at CERN will produce an object set on
the order of 200 Terabytes [Col96]. Already today
the experiment NA48 at CERN is recording data at
a sustained rate of 20 MB/sec [PS98]. Support for el-
ficient analysis of massive materialized views is to be
provided. Third, such object sets are read-mostly, ei-
ther never being updated or being updated only infre-
quently in large batch jobs during which the database
may be off-line. Adding new objects is often also done
in large batches simply constructing a new partition,
filling it and logically (but not physically) attaching
it to the database. This way, a database neither need
to be taken off-line nor indexes reorganized. Fourth,
OLAP object sets have a long lifetime. They are often
kept and queried for months or years.

Recall, that OLAP and OLTP object sets also share
common properties. In many cases, distinct objects
are considered to be entirely uncorrelated, i.e. statis-
tically independent from each other, resulting in ob-
ject order to be irrelevant from the user’s point of
view. Attributes of a single object can well be cor-
related. Values of an attribute are often not uniformly
distributed but highly skewed, i.e. most attribute val-
ues populate dense areas. For example, the attributes
age and salary are usually correlated, with elder em-
ployees often earning more than young ones. Salary is
also strongly skewed, since few people earn more than
$100K a year, but most people’s income fits within a
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certain realistic range.

OLAP range queries as well exhibit specific proper-
ties that distinguish them from OLTP range queries.
Data exploration is an iterative process during which
users frequently issue range queries, analyze their re-
sults to improve understanding e.g. of the nature of a
subatomic Higgs particle, which in turn leads to im-
proved selection criteria used in a subsequent query-
analysis step. First, although at any given moment
in time during production most frequently used query
patterns of the past can be determined, future query
patterns are to a significant degree unpredictable at
index definition and reorganization time. Shape, lo-
cation, and selectivity of range queries can strongly
vary because a given object set can be used by many
users for many different analysis use cases which more-
over can significantly change over time with shifting
interests. Further, access patterns are made less pre-
dictable by the fact that a user can be member of one
of dozens of institutions loosely coupled in large global
collaborations, as is, for example, the case in high en-
ergy physics experiments, earth and climate studies
and in astronomy. For example, range queries can be
exact range queries, i.e. operating on all object at-
tributes. They can as well be partial range queries,
i.e. operating on a possibly small subset of attributes.
In many cases, partial range queries in a few attributes
are more common than exact range queries. Queries
can cover large or small volumes of domain space. Sec-
ond, queries in OLAP applications do not necessarily
follow the data distribution of an object set. They can
operate on densely populated areas of data space (clus-
ters) as well as on almost empty data space. Therefore,
the volume of domain space covered by a range query
is not necessarily correlated with its result set size. For
example, a CMS application searching for the yet un-
detected Higgs particle will be confronted with a set
of 10° objects which is expected to contain only of the
order of 102 Higgs particles, if the particle exists at all.
The properties of a Higgs particle are not fully under-
stood. In this context it is unknown whether Higgs
particles "live” in data space within dense clouds of
noise objects or within virtually empty space. As a
consequence, queries covering small volumes can have
large result set size whereas large volumes can yield
small result set size.

It follows, that determining how to index which at-
tributes to obtain optimal performance for an inho-
mogeneous query mix is a nontrivial task. However,
a useful DBMS must not only efficiently support cer-
tain types of range queries but cover the whole con-
tinous spectrum from low to high dimensional range
queries with small to large selectivities operating on
low to high cardinality attribute domains. In the
OLAP arena, access methods researchers are facing
challenges and opportunities different from OLTP. On
the one hand side, unpredictable access patterns are

increasingly becoming a major problem. On the other
hand side, the read-mostly nature and long life time
of OLAP object sets opens new opportunities to build
integrated pipelined indexes relying on combinations
of multidimensional indexes, clustered files, lossy and
lossless compression, accurate histograms as well as
other mechanisms. Such combinations offer advan-
tages over individual indexes, as the advantages of each
structure can be multiplied.

A considerable amount of work has been done in at-
tempting to solve the problem of indexing high dimen-
sional space, both for exact range queries and nearest
neighbor search. Most recent offsprings of research ac-
tivity in the field include the (extended) Pyramid tree
[BKB98], VA-file [WSB98], BV-tree [Fre95], UB-tree
[Bay97], X-tree [BKK96] and TV-tree [LJF94]. For
surveys of the field see [BK98], [GG96]. Variants of
the B-tree [Com79] are popular for one-dimensional
indexes. A widespread index structure not specifically
tied to low or high dimensionality is the bitmap with
its myriads of variants using range-encoding, bit slic-
ing, partitioning, compression or combinations thereof
[CI98], [WB98], [0Q97] and [WY96]. [Sch94] discusses
parallel range partitions. The VA-file [WSB98] uses
bin based approximations in an intermediate layer for
nearest neighbor search. For an overview of data ware-
housing see [BDF797], [CD97a|, [CD97b] and [Gup97].
A survey on query optimization in relational databases
is given in [Cha98].

In this paper, we reshape some of these indexes to
make them combinable. We also introduce new con-
cepts were need arises. The new structures support a
broad variety of range queries. Furthermore, they im-
prove on their ancestors in several ways. Whereas the
(extended) pyramid tree is limited to queries close to
exact range queries, the foreign pyramid tree can effec-
tively be used for exact and partial range queries with-
out duplicating data objects. For low and medium car-
dinality attribute domains, the minmax index shows
strong speedups over a plain columnwise clustered in-
dex. Next, the approximate index attacks the prob-
lems caused by high cardinality attribute domains. It
is a framework modelling the constraints under which
any lossily compressed index operates when obtain-
ing both probabilistic and exact answers, regardless
of the underlying implementation. Last, a concrete
implementation of an approximate index is proposed,
the quantile index. For probabilistic search it shows
strong speedup rates over a columnwise clustered in-
dex. For exact seach it can often but not always con-
tribute moderate to large speedups.

This paper is organized as follows. Section 2 clar-
ifies essential terminology. Next, Section 3 motivates
and describes our overall approach. Sections 4, 5 and
6 are the main contributions of this paper. Section 4
proposes the foreign pyramid tree, a variant of the ex-
tended pyramid tree. Section 5 analyzes properties of
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the well known columnwise clustered index and pro-
poses a compact variant termed minmax index. Next,
Section 6 proposes the abstract approximate index and
a concrete implementation of it, the quantile index. Fi-
nally, Section 7 concludes and refers to ongoing work.

2 Terminology

An object type is defined by its d attributes and their
associated domains. In order to be meaningful for a
range query, upon each domain an order relation must
be defined. To simplify description and later analy-
sis, we adopt the assumption of [BKB98] restricting
a domain to be the floating point unit domain [0, 1].
Note, that we can impose this assumption without loss
of generality, since it is always possible to define an
on-the-fly transformation from a given domain to the
unit domain. Therefore, an object can be viewed as
a d-dimensional point located in the unit hypercube
[0,1]%. Throughout this paper we will use the terms
attribute and dimension interchangeably. An object
set S = {Oo,..,On_1} is given by a set of N such
points. A range query @ in k of d dimensions is equiv-
alent to a k-dimensional hyperrectangle and given by

Q = ([gming, gmaxo], ..., [gming_1, gmazs_1])

with gmin;, gmaz; € [0, 1], gmin; < gmaz; 1 < k < d.

”Find all objects with x € [0.2,0.5] and y € [0.1,0.9]
and z € [0.2,0.3]” is an example for a range query. A
partial range query is a range query with less than all
attributes specified, i.e. with 1 < k < d. An exact
range query is a range query with all attributes speci-
fied, i.e. with k = d. A partial range query can further
be seen as an exact range query with all unspecified
attributes represented by the full extension of the unit
domain [0,1]. The result set of an exact range query
is the set of all objects or object identifiers satisfying
the query. The spatial selectivity ss of a range query
is the fraction of domain space covered by it and given
by ss = HZ:OI gmaz; — gmin;. The resull selectivity
rs of a range query is the fraction of the object set
selected by it and given by rs = % In the
case of uniformly distributed attribute values, there
holds ss = rs. If subsequently we use the unqualified
term selectivity, we refer to a result selectivity.

3 MARS

Although a considerable amount of work has been done
to cope with each of the properties of OLAP object
sets and range queries separately, to the authors best
knowledge, no single index data structure can ade-
quately handle all properties at the same time. First,
B-trees, bitmaps and their relatives by definition can-
not adequately prune multidimensional space. Second,
intuitively it is clear, that any multidimensional index
data structure partitioning the space can only poorly

perform if confronted with a partial range query, since
the [ partitions of d — k indexed dimensions do not
contribute at all to pruning. Therefore, the pruning
ability of a multidimensional index degrades with de-
creasing k. In addition, the [ partitions of d—k indexed
dimensions can unnecessarily fragment an object set,
which often increases random access at the cost of lin-
ear access. This is particularly unfortunate in the case
of highly selective queries. Other index techniques,
too, perform well for certain use cases, but fail for
others.

This suggests, that a single index structure alone
is unlikely to be able to provide adequate efliciency
for OLAP requirements and that rather an integrated
combination of several index structures is most likely
to provide the greatest potential. We think that it
is important to be cognizant of the combined power
of using multiple indexing techniques and how that
interacts with query optimization. Motivated by this
insight, we have been looking for components which

e to a large degree complement each others disad-
vantages

e can effectively be combined in a filter pipeline to
contribute multiplicative pruning

e can be plugged together seamlessly, yet are inde-
pendent enough to allow for different query exe-
cution plans for different kinds of range queries

e are simple yet effective

There are good reasons why simplicity is a key re-
quirement for useful index structures. For reliable
global cost models, it is important to build upon sim-
ple indexes. Complex indexes are often (if at all)
accompanied by complex and/or [ragile cost models
which are hard to combine in a query optimizer. This
is part of the reasons why many advanced index struc-
tures do not find their way into commercial DBM-
S’s. Even if some of them would be incorporated, the
majority of DBA’s (who are not access method re-
searchers) would simply find them incomprehensible,
offering little practical guidance as to how and when
they should be used and when alternatives are prefer-
able.

Three simple and effective index structures were de-
signed, the foreign pyramid tree, the minmax index and
the quantile indez, together forming MARS (Multi At-
tribute Range Searching). For example, the fewer at-
tributes a range query specifies, the worse a foreign
pyramid tree performs, whereas both minmax index
and quantile index perform the better. The reverse
also holds. As a further example, the more selective
a range query, the less a foreign pyramid tree is able
to prune the search space, whereas both other index
structures can considerably reduce the amount of 1/O
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needed to be performed. Not only do these compo-
nents to a large degree complement each others dis-
advantages, but, queried in the right order, they can
mutually benefit from each other. For example, a for-
eign pyramid tree can often strongly prune the search
space for a range query close to an exact range query,
while both other index structures can contribute fur-
ther speedup factors during subsequent query process-
ing steps. A query optimizer has foreign pyramid tree,
minmax index and quantile index at its disposal. It
may, for example, decide to visit these indexes in a
pipeline establishing order, visiting a foreign pyramid
tree first, then proceeding to query a quantile index
and finally query a minmax index. Before we describe
these three index data structures which are largely in-
dependent from each other, let us briefly report how
supporting statistics are obtained and used.

3.1 Collecting statistics

Given the read-mostly nature and long lifetime of
OLAP object sets, spending time to gather accurate
statistics describing an object set is affordable. Statis-
tics are collected before bulk loading and never need to
be updated again. The technique reported in [MRLIS]
is applied to compute approximate equi-depth his-
tograms (one-dimensional quantiles, including medi-
ans) representing an entire object set. The technique
requires only one pass over the object set and lim-
ited memory while giving explicit and customizable
approximation guarantees. Histograms will later on
be used for selectivity estimation, query optimization
and lossy compression. To later on be able to com-
press attribute values without loss, for each attribute
minimum and maximum of its values are computed in
the same pass.

4 Multidimensional index

The extended pyramid tree [BKB98] was chosen as
basis for a multidimensional index data structure for
a number of reasons. It is simple and effective. Bulk
loading a pyramid tree is fast, which is important to al-
low to rebuild indexes upon changing access patterns.
For exact range queries the extended pyramid tree
scales well in space and time with the number of di-
mensions and the number of stored data objects. The
pyramid tree processes range queries the better the
higher dimensional space and query are. The closer a
partial range query matches an exact range query, the
faster queries are processed. For partial range queries
with decreasing dimensionality, its performance grace-
fully (near linearly) degrades to a linear scan.

Figure 1 shows the pruning behavior of a pyramid
tree for range queries with varying dimensionality and
spatial selectivity. Index dimensionality was d = 10.
Data was uniformly distributed. For each plot point 25
randomly located hypercube shaped range queries con-
tained in the unit hypercube were computed. An af-

0.9 0.9

0.8 0.8

0.7 0.7

0.

o

Selectivity

+-0.001

0.5 0.5

0.4 0.4

»-0.01

Affected Volume

0.3
0.1

02 - %1 - {02

0.1f1——05 e N R ]

0 2 4 6 8 10 12 14

Query Dimensions k

Figure 1: Pruning behaviour of pyramid tree

fected volume of 0.2 means that 20% of all objects had
to be examined. The figure shows the importance of
exact range queries for a pyramid tree. Where k < d,
pruning ability degrades with decreasing k near lin-
early to a linear scan. Where k£ > d, query dimension-
ality was shrunk to d dimensions by omitting & — d
dimensions, thereby increasing selectivity. In these
cases, it can be seen that if an efficient way can be
found to externally index the remaining k& — d dimen-
sions, performance can often be improved over a single
index with dimensionality> k.

Let us briefly recall the ideas of the extended pyra-
mid tree. It is an index data structure particularly de-
signed for range queries in high dimensional space. It
views the full search space as a unit hypercube [0, 1]%,
where d is the number of attributes (dimensions) in-
dexed. A hypercube of dimensionality d has 2 x d
”surfaces”, each ”surface” being (d — 1) dimensional.
The full search space is partitioned into 2 x d hyper-
pyramids, where each pyramid has as its base one of
the 2 x d ”surfaces” and as its top the center point of
data (an approximation of the d-dimensional median),
as shown in figure 2a). The technique defines a geo-
metric transformation mapping d-dimensional points
(objects) to one-dimensional points called pyramid val-
ues. Each pyramid value consists of the pyramid an
object falls into as well as the height of the object
within its pyramid, as shown in figure 2b). A con-
catenation trick is used to merge both components
into a one-dimensional pyramid value. The pyramid
tree physically organizes its points with the help of a
one-dimensional index data structure like peels of an
onion, e.g. by using a BT-tree. Attribute values of
a single object are clustered together. Range queries
are processed by determining the parts of pyramids af-
fected by a query as shown in figure 2¢). Each affected
part contains contiguously stored points. Those points
are read in and checked against the query to determine
whether they really qualify.
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Figure 2: Pyramid tree [BKB9§]

4.1 Foreign pyramid tree

We adopt the main ideas of the extended pyramid
tree. However, it is modified in two ways to improve
bulk loading, and more importantly, to allow cluster-
ing methods suited for partial range searching. Recall
that an (extended) pyramid tree clusters attribute val-
ues of a data object together. Although optimal for
exact range queries, this means that for partial range
queries potentially many irrelevant attributes need to
be read during query processing. We therefore mod-
ularize the closed extended pyramid tree such that
clustering decisions are delegated to an external in-
dex. Now the extended pyramid tree can be combined
with other index structures (e.g. a columnwise clus-
tered index) in many interesting ways. The new index
structure is a very fast prefilter layered on top of an-
other arbitrary index structure holding data objects.

We call the new structure foreign pyramid tree to
stress its most important property, which lies in not
storing data objects but merely a key pair list in a
BT -tree, i.e. a list of (key, pyramid value) pairs phys-
ically sorted and logically indexed by ascending pyra-
mid value. Each key pair represents a data object.
Keys (integers) are assigned to data objects by their
order. Data objects are stored in an arbitrary ex-
ternal index (preferably sorted by key) which imple-
ments clustering methods appropriate for partial range
searching. If the external index is sorted by key, then
a key can be seen as a row id.

Definition 1 (Key) Let S = {Oq,..,On_1} be a set
of N objects, puoy; be the pyramid value of a particular
object, the list SS be S sorted ascending by pyramid
value, i.e. such that Vo<icn_1 : pugs, < PUss;, ., then
the key of an object obj is defined as keyop; = (i|SS; =
obj).

Definition 2 (Key pair and key pair list) The
key pair KP of an object obj is defined as KP,; =
(keyobj, PUobj) and the key pair list KL of S is defined
as KL = (KPSSOr-wKPSSN,l)-

PY PY PY PY PV

EaEt

Figure 3: Affected key intervals

Query processing takes as input a range query and
produces as output a list of affected [minkey, mazkey|
intervals representing qualificant objects which need
to be checked against the query. In our
implementation these intervals are identical to
[minRowld, maxRowld] intervals of an external
columnwise clustered index sorted by key. The out-
put list is computed as follows. First, the parts AP
of pyramids affected by a query are computed without
any I/O exactly as done by the extended pyramid tree:
A list AP is set to be empty. Then, for each pyramid
it is determined if it is affected by the query. If so, the
minimal pyramid value interval [minpv, mazpv] con-
taining the query is computed and appended to the
list AP. For details, see [BKB98].

Proposition 1 (Affected parts)

Let pv.pyramid and pv.height denote the pyramid
and height of a pyramid wvalue pv, respectively.
Then affected parts AP of an (arbitrary) pyramid
tree with dimensionality d take the shape AP
([minpug, maxpvo), ..., [minpug, mazpy]), with 0
t < 2 x d,Yo<u<t (0 < minpu,.pyramid
maxpv,.pyramid < 2 x d,0 < manpv,.height
maxpvy.height < 0.5),Yo<y<t 1 MATpvy, < Minpuycy.

IA A

In a second step, affected key intervals correspond-
ing to affected parts are determined according to the
following definition.

Definition 3 (Affected key intervals) Let K P.pv
denote the pyramid
value of a key pair KP, then the affected key inter-
vals AK of affected parts AP are defined as AK =
([minkeyo, maxkeyol, ..., [minkey,, markey:]), Yo<u<s
(KLminkeyu~pU = minpvu7(v0§i<minkeyu : KLi~pU <
minpvu)vKLmamkeyu~pU < maxpvuvvmazkeyu<j§t
KLj.pv > maxpvy).

In other words, the minkey of a minpv corresponds
to the position of the leftmost pyramidV alue > minpu
in a key pair list. The mazkey of a mazxpv corresponds
to the position of the rightmost pyramidValue <
mazpv in a key pair list. Figure 3 depicts these re-
lationships. Affected key intervals can be found by
traversing the foreign pyramid tree’s BT-tree in a
straightforward and efficient manner. Assuming that
internal nodes of a B*-tree can be kept in main mem-
ory cache, looking up affected key intervals requires at
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most 2 x (¢ + 1) page reads (0 < ¢ < 2x d). For exam-
ple, in a 10-dimensional foreign pyramid tree at most
40 pages need to be read. The average case is close to
the worst case. S i_, 1+|AK;| objects of the external
index need to be examined further.

To summarize, because the foreign pyramid tree
delegates clustering decisions, it can effectively be used
for exact and partial range queries without duplicating
data objects, whereas the (extended) pyramid tree is
limited to queries close to exact range queries.

We now improve on the bulk loading mechanism
known so far. Bulk loading an extended pyramid tree
requires knowledge about the d-dimensional median of
an object set. [BKB98] proposed a method to load an
extended pyramid tree while computing an approxi-
mation of the d-dimensional median on the fly. Their
method requires the tree to be rebuilt whenever the
constantly adjusted median has moved more than a
given threshold, taking at most a logarithmic number
of rebuilds. In contrast, a foreign pyramid tree relies
on medians representing the entire object set to be
provided by the external statistics collecting compo-
nent already described. Therefore, a foreign pyramid
tree need not be rebuilt during bulk loading. By the
time a foreign pyramid tree is to be loaded, medians
are already computed, resulting in superior load per-
formance.

5 Columnwise clustered index

A columnwise clustered indez is a relation with colum-
nwise clustering. It is, for example, the default in
Sybase 1Q [Syb97]. It will serve as the root for sev-
eral more refined index structures described later on.
The main idea behind this index is to avoid having
to read in attributes which are irrelevant to a par-
tial range query. For example, a partial range query
specifying only five out of hundred attributes shall not
waste I/O in reading 95% irrelevant attributes. In
contrast to a (foreign) pyramid tree, the closer a range
query matches an exact range query, the less prun-
ing a columnwise clustered index can contribute. Or,
the other way round, the closer a range query matches
a one-dimensional range query, the more pruning it
can contribute. The columnwise clustered index is not
only simple but also robust under unpredictable access
patterns, a fundamental advantage in OLAP.

Query execution takes as input a column, a query
range R = [gmin, gmaz] and a checklist, i.e. a sorted
list of row ids to be checked. It returns as result a mod-
ified checklist containing row ids of attribute values
contained in the query range (members). The result-
ing checklist is used as input to query the next column,
and so on. A checklist is modelled as a bit vector. To
improve pruning efficiency a query estimator judges
the selectivity of a range query for each column based
on equi-depth histograms built before bulk loading.
Columns are queried in order of ascending selectivity.

Pagesize
08 512
1024 _—
06} | — 2048 _—

4096 _ _—

04 ~ _—

Page selectivity
\

0.2

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014
Checklist result selectivity

Figure 4: Estimated average page selectivity

The index supports two retrieval plans, partial scan
and full scan. Partial scan reads only pages of a col-
umn containing attribute values that need to be tested.
It reads attribute values referred to by the input check-
list from ”top to bottom”, while skipping gaps between
pages referred to by the checklist. For such direct
access to be possible, a column holds a simple O(1)
lookup table which allows for a given row id to ob-
tain its value by returning a reference to its page and
the position within it. The retrieval plan full scan has
the same interface as partial scan, but sweeps over a
column without skipping page gaps.

5.1 Analysis

From a checklist, its page selectivity can be computed.
Using partial scan, no speedup over full scan can be
seen in typical disk-operating system pairs above a
threshold of some 15 — 20% page selectivity because
these parts strongly favour linear access over random
access. Below the threshold, decreasing page selectiv-
ity causes exponentially growing speedup over full scan
[Hol98], [Hol97]. A columnwise clustered index uses
the threshold as well as an estimate of the page selec-
tivity an input checklist causes to a column to decide
which retrieval plan to apply to a particular column.

Lemma 2 (Average page selectivity estimate)

Let N be the cardinality of a column, as be the bytes
an attribute value of the column takes, Scpecr, be the
result selectivity of a checklist, pagesize be a disk par-
tition’s or DBMS page size [bytes], then, in the spirit

of [Mal98], an estimate of the average page selectivity
nX(p—1)
of the checklist is given by spage = 1 — W, with
(Nxscheck)

ne [mammie| = [¥] () = 1 iy > o

Figure 4 depicts estimates for varying checklist re-
sult selectivities and page sizes with as = 4. As can
be seen, only checklists with very low result selectiv-
ity translate to a page selectivity below a threshold
of some 15 — 20%. For example, for pagesize = 4096
bytes (512), only checklists with result selectivity <
0.0002 (0.002) are worth to be executed with the re-
trieval plan partial scan. Note, that such low result se-
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Figure 5: Est. read time in columnwise clust. index

lectivities can often occur in high dimensional queries
since selectivities are multiplicative.

It is surprising that many access methods use the
number of page reads as unit for cost models. This
unit often poorly reflects the actual I/O time, since
an access method A reading 5 times more pages than
method B can be just as fast in terms of I/0. (Cache
hits play a minor role in OLAP, because queries usu-
ally retrieve massive amounts of data so that cache hits
are rare in any case.) Here a cost model consisting of
two parameters is used to estimate the time needed
to execute a range query. First, the readrate for full
scan over a single column at 100% page selectivity is
measured. Second, the speedup of partial scan over full
scan is measured as a function of page selectivity. Both
parameters vary from one disk-operation system pair
to another. Throughout this paper, we use the mea-
surements of [Hol98], [Hol97] as basis for our examples,
resulting in readrate = 691 pages/sec (£ 5.4M B/ sec)
at pagesize = 8192 and a speedup curve growing ex-
ponentially with decreasing page selectivity below a
threshold of 20% page selectivity.

The time needed to read a column with pg
pages at page selectivity spq4 is given by t =
Figure 5 shows esti-

readrateX Mam(plg,speedup(spage)) :
mated read times in a columnwise clustered index
for a k-dimensional range query with the same se-
lectivity in each attribute. Parameters were N =
108, as = 4 (integer attributes),readrate = 691
pages/ sec, pagesize = 8192.

5.2 Minmax index

In this subsection we use lossless compression on at-
tribute values of low and medium cardinality domains.
For query execution it is important to have a compres-
sion technique that, given a row id, allows to look up
the associated attribute value in O(1). A compression
technique without this property could be useful, but
is likely to be problematic because it must carefully
balance CPU time against I/0O time. We propose the
minmaz indez, a small yet often effective extension of
a columnwise clustered index. It can also be seen as
a type of compressed bitmapped index. The minmax

\ Selectivity
\

75 \ \ .08

\ \ v 05

=01

Speedup

7 \ \ ——0.01

0 5 10 15 20
Query dimensions k

Figure 6: Estimated speedup of minmax index over
columnwise clustered index

index carries the O(1) property. In fact, it imposes
almost no CPU overhead, resulting in high query exe-
cution performance even though it sometimes does not
yield strong compression.

Before bulk loading a column, minimum and max-
imum of its attribute values are taken from the sta-
tistics collecting component and only the necessary
constant number of bits are used to store a com-
pact representation of an exact attribute value. Given
an attribute normally taking bits bits, the compres-

X . 7 - o
sion coeflicient cc is given by cc = —compressed
uncompressed

[logy 1+maz—min]

Figublfésﬁ depicts estimated speedup rates of a min-
max index over a plain columnwise clustered index.
Parameters were N = 10° pagesize = 4096. Attribute
size was as = 4 (integer attributes) in the columnwise
clustered index. Compression coeflicient was cc = %
in the minmax index. As can be seen, speedup is
not constant equal to é since the lower a compression
coeflicient, the more values fit onto a page which in
turn can increase page selectivity.

Although methods exist to compress floating point
values without loss, the minmax index does not sup-
port one. In addition, if attribute values cover large
parts of a high cardinality domain, its encoding mech-
anism cannot contribute much compression. The sub-
sequently discussed indexes complement these disad-
vantages.

6 Approximate index

In this section, we attack the problems caused by high
cardinality attribute domains. This work is motivated
by the fact that in scientific data warehouses float-
ing point attributes are very common. Unfortunately,
such attributes are not well compressible and quickly
decompressible without loss. The only applicable class
of methods seems to be lossy compression. We propose
the approrimate inder, an abstract index modelling
the constraints under which any lossily compressed in-
dex operates when obtaining both probabilistic and
exact answers. It is equipped with query processing
techniques generally applicable regardless of the un-
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derlying implementation.

The approximate index is about trading accuracy
for space. The idea is to store an approximation of
each attribute value which takes an order of magni-
tude less space than the exact value, yet still allows to
considerably prune the search space. Query execution
can then operate on smaller objects, therefore needing
an order of magnitude less I/O. The index can be used
as fast stand-alone index, if only probabilistic answers
to a query are needed. If, as in most cases, exact an-
swers to a query are mandatory, the index can be used
as a safe coarse grained fast prefilter layered on top
of another index holding exact attribute values, e.g. a
minmax index. An arbitrary lossy compression tech-
nique can be applied to approximate attribute values
(e.g. bin based approximation, the fast wavelet trans-
form, etc.).

For the correctness of query execution, an arbitrary
lossy compression technique must store (relative or ab-
solute) bounds on the approximation error it causes to
a column, page or value. This is necessary for query
execution to be able to reconstruct safe bounds on an
approximate value, i.e. an interval which is guaranteed
to contain the exact value. Of course, it is desirable
to have safe bounds to be as tight as possible, recon-
structed from as little space as possible. It is up to
a concrete implementation to define how to compute
and store approximations and how to reconstruct safe
bounds.

Definition 4 (Safe bound) Letv be an exact value,
x be a (decompressed) approzimation of v, then sb =
[min, mazx] is a safe bound on x < v € sb.

Let R = [gmin,gmaz] be a query range. Then
it can be determined based on an approximate value
alone, whether v € R or v perhaps € R, i.e. whether x
is a member or a candidate of R as follows.

Definition 5 (Member, Candidate, Qualificant)
x is a member of R < sb € R. x is a candidate of R
< sb¢ RA(sb.min € RV sbomax € RV R € sb). x
is a qualificant of R < x is a member of RV x is a
candidate of R.

Obviously, there holds z is a member of R = v € R,
as well as z is not a qualificant of R = v ¢ R. Figure 7
depicts an example with R = [0.05,0.5]. For v; = 0.4
we store a compact representation of, say z; = 0.42,
and during query processing get sby = [0.35,0.6] and

1 is a candidate of R. For vg = 0.2 we store, say
g = 0.22, and get sby = [0.1,0.3] and x4 is a member
of R. For vz = 0.75 we store, say 3 = 0.71, and
get sby = [0.7,0.8] and z3 is neither a member nor a
candidate of R.

We distinguish two query use cases: a) probabilis-
tic answers are sufficient, b) exact answers are manda-
tory, leading to two query execution plans, probabilis-
tic search and exact search. Both plans can use partial
scan and full scan as retrieval plans. Since the usage
of the two retrieval plans is irrelevant to probabilistic
search and ezxact search at the level described here, we
subsequently will no more distinguish between them.

6.1 Probabilistic search

Probabilistic search is an execution plan for a use
case that delivers truly probabilistic answers in the
sense that a result set may contain false hits and
miss true hits. The user specifies the degree of
confidence his/her use case requires. He/she may
e.g. decide to include in the result set only ob-
jects which have a probability of > 95% to satisfy
a query. Probabilistic search takes as input a col-
umn, a query range R = [gmin, gmaz], a confidence
threshold ¢t € [0, 1]1i0a: and a probability checklist
PCL = (PCL,,...,PCLy_1), with PCL; € [0,1]t10a:-
Entries in the input probability checklist are expected
to be set to 1 if the object associated with the entry
should be checked, and 0 otherwise. A search returns
as output a modified probability checklist containing
the probabilities of objects with a probability to be
contained in the query greater or equal to the confi-
dence threshold. All other entries of the output are
set to 0.

Assuming actual data distributions within safe
bounds are unknown, it is reasonable to assume uni-
form distribution and uncorrelated attributes. In this
limited environment, probabilistic answers are based
on ratios of spatial volumes. We will later in Section
6.3 see that for concrete implementations data distri-
butions are determined which allows to replace ratios
of spatial volumes with precise probabilities. However,
for now, we can view safe bounds on an approximated
object as a range query.

Lemma 3 (Contained fraction) Let A, B be range
queries in the same k dimensions. Then the fraction f

. . . . k1 . .
of B contained in A is given by fa g =[[,_o %.

Now the probability that an exact object is con-
tained in a given range query can be determined based
on an approximated object alone according to the fol-
lowing lemma.

Lemma 4 (Object containment probability)

Let Q be a range query in k dimensions, X =
(o, .y Td—1) be an approzimation of a d-dimensional
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object O, then the probability P that O is contained in
Q is given by P = fq (sbay,.. sba, ,)-

Lemma 5 (Value containment probability) Let
R = [gmin,gmaz]| be a query range, v be an exact
value, x its approxrimation. Then the probability p that

o RNsb,
v € R is given by py p = ‘ \;bs\ L.

Range queries are executed as follows. Let
C = (zo,...,xN_1) be a column with approximate
values. Let R be the query range for the col-
umn. For each ¢ with PCL; > 0 the prob-
ability checklist is modified as follows PCL; =

PCLi X Pz; R if PCLi X Pz; R >ct  The ob-

0 else

tained output probability checklist is used as input for
a next column, and so on. As can be seen, objects be-
low the confidence threshold are shortcut and no more
need to be considered in subsequent columns.

6.2 Exact search

Ezact search is an execution plan for a use case that
delivers exact answers in the sense, that its output ex-
actly distinguishes between three classes of objects: a)
objects which are members, b) candidates, i.e. objects
which might be members and ¢) objects which are nei-
ther. It does not depend on probabilities.

Fxact search takes as input a column, a query range
R = [gmin, gmaz] and a qualificant checklist (QCL), a
bitvector with the same shape as used by a columnwise
clustered index, i.e. QCL = (QCL,,...,QCLy_1),
QCL; € {true, false}. It returns as output a mod-
ified qualificant checklist containing qualificants, i.e.
objects either being a member or a candidate. As ad-
ditional output, status checklists (SCL) of the same
shape containing members only are returned.

Definition 6 (Qualificant & status checklist)
Let C = (xo,...,xn_1) be a column with approz-
imate attribute values, then a qualificant checklist
QCL is defined as QCL = (QCLy,...,QCLy_1), with
. true if z; is a qualificant of R
QCL: = false else
A status checklist SCL is analogously defined as
SCL = (SCLy,...,SCLyx_y), with SCL; =
true if x; is a member of R
false else )

Range queries are executed as follows. Let C' =
(o, ...,xN_1) be a column with approximate values,
R be a query range for a column. For each ¢ the
status checklist is set to SCL; = QCL; AND z; is a
member of R. For each i the qualificant checklist is
modified as follows: QCL; = QCL; AND z; is a qualif-
icant of R. The output qualificant checklist is used as
input for a next column, and so on. Status checklists
are collected while successively sweeping over multiple

a)Search in approximate valu
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Figure 8: Exact search

columns. After all columns relevant for a range query
have been processed, exact search returns to the query
execution engine the last qualificant checklist and all
status checklists. Figure 8a) depicts an example use
case.

In a next step, candidates need to be checked fur-
ther to exactly determine, whether they satisfy the
query or not. This is done by looking up the exact
values of candidates stored in an arbitrary external in-
dex, e.g. a minmax index. However, having applied
the plan exact search the query execution engine now
has status checklists at its disposal describing which
attributes actually made an object a candidate. It
therefore only needs to read and check those relevant
attribute values.

The just computed qualificant checklist and all sta-
tus checklists are given as input to a query execution
plan operating on an external index holding exact val-
ues, as follows. First, the plan determines members.
Members are objects which are contained in all sta-
tus checklists at the same time. The memberlist M L
can be found by intersecting statuslists (c.f. Fig. 8b).
Next, candidates (CCL) are determined with a check-
list difference operation, since candidates are objects
which are contained in the last qualificant checklist,
but not in the just obtained memberlist (c.f. Fig. 8b).

Let @ be a range query, C;; be the exact value of
position 7 in column 7, SCL;; be checklist entry ¢ of
status checklist j. Then exact values of candidates
are searched as follows. For each column j, for each 4
in CCL the candidate checklist is modified according
to: CCL; = CCL; AND (SCLJ"I' OR Cj’i € Q]) The
shortcut order of boolean operators ensures that no
more than the absolutely necessary exact values cause
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Figure 9: Bin Index

1/0. The loop eventually results in an output check-
list CC'L containing all candidates which turned out
to be members (c.f. Fig. 8¢). In a final step CCL
is unionized with the memberlist M L. and returned as
result set of the query (c.f. Fig. 8d). Note that bitvec-
tor operations can be implemented extremely eflicient,
resulting in little CPU consumption for execution of
both probabilistic and exact search.

6.3 Quantile index

Assume partitioning an attribute domain into disjoint
subdomains (bins) such that the union of all subdo-
mains is the entire domain. A bin index is a concrete
implementation of an approximate index using a min-
max index to store for each attribute value as approx-
imation its bin value bv (an integer), i.e. the bin an
attribute value falls into. At the price of accuracy, one
can choose how much space to spend by deciding how
much bins to allow, since a value from b bins takes
[log, b] bits. For example, by using 16 bins one is able
to approximate a 32 bit value (float or integer) with 4
bits.

Assume b bins B =
([ming, maxo), ..., [miny_1, mazxy_1]) and a bin value
bv of an exact value v such that v € By,,0 < bv < b.
To fit bins into the general framework of the approxi-
mate index, we define the approximation z of a value
to be its bin value and reconstructed safe bounds on
the approximation to be the bin of a bin value, i.e.
z = bv, sb, = By,-

Figure 9 depicts an
example with B = ([0, 0.1),[0.1,0.3), [0.3,0.6), [0.6, 1])
and R = [0.05,0.5]. For v; = 0.4 we store a com-
pact representation of bv; = 1 = 2 and during query
processing get sb; = [0.3,0.6) and z; is a candidate
of R. For vy = 0.2 we store buvg = 9 = 1 and get
sbg = [0.1,0.3) and x5 is a member of R. For vg = 0.75
we store bug = 3 = 3 and get sbg = [0.6,1] and z3
is neither a member nor a candidate of R. Similar
ideas are applied in the VA-file [WSB98], which uses
bin based approximations in an intermediate layer for
nearest neighbor search but differs from the bin in-
dex in that it clusters attribute values of an object
together.

Since it is desirable to achieve good pruning in the
average case, each bin should contain about the same
number of values. Therefore bins are drawn from
the equi-depth histograms (quantiles) already avail-
able from the statistics collecting component described

in Section 3.1. The resulting index structure is called
quantile indez.

Probabilistic search.

Since the value distribution of attributes is known
from histograms, the value containment probability
from Section 6.1 can now be expressed precisely by
_ N(Rnsby)
Pe.R = “N(b,)
contained in range r, obtained from an equi-depth his-
togram, sb, = By, and N(sb,) = %. The more bits
stored and the more quantiles a histogram keeps, the
higher the accuracy of this probability. We suggest
histograms occupying one page with, say, 1000 quan-
tiles.

In a bin index, probabilistic search can efficiently
be implemented as follows. Precompute p, r for all
bins and temporarily store the probabilities in an ar-
ray. While iterating over a column’s approximate val-
ues, simply look up the probability to be contained in
the query range in O(1) in the array. Exact search
uses similar precomputations not involving probabili-
ties to determine whether an approximate value is a
qualificant and a member. Thus, CPU comsumption
for both plans is very little.

, where N(r) is the number of values

6.3.1 Analysis of exact search

Fig. 10 (a,b,c) depict estimated speedup rates of ez-
act search with a quantile index over a plain colum-
nwise clustered index. Number of bins and result
selectivity are varied. FEach plot point depicts one
k~dimensional range query with the same given re-
sult selectivity in each dimension. Parameters were
N = 10% pagesize = 4096,as = 4 (float attributes).

As expected, the smaller b is chosen, the larger the
maximum speedup we can hope for gets. However, the
smaller b, the higher dimensional a query needs to be
to enjoy speedup. The larger b, the lower dimensional
a query may be to enjoy some (moderate) speedup.
The higher dimensional queries are, the larger speedup
gets. However, for queries with large result selectiv-
ity a quantile index often cannot effectively prune the
search space; too many candidates remain. To summa-
rize, the overhead of querying an intermediate quantile
index is often (but not always) small compared to the
reduction of I/O it can contribute to the next query
step. It is a good idea to keep more than one quan-
tile index, each with a different number of bins (e.g.
4,16,256).

Fig. 10 (d.e,f) show in greater detail how the
speedup rates reported in Fig. 10 b) are assembled.
They depict estimated read times for varying query di-
mensionality and result selectivities. Each plot point
depicts one k-dimensional range query with the same
given result selectivity in each dimension. Fig. 10 d)
shows the time needed to execute queries in a plain
columnwise clustered index. The usage of the execu-
tion plan ezact search in a quantile index is depicted
in Fig. 10 e¢). Read time requirements for looking
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Figure 11: Probabilistic search using quantile index

up exact values of remaining candidates in a column-
wise clustered index are shown in Fig. 10 f). Speedup
rates are obtained by relating the time spent in d)
to the time spent in €) + f). Parameters again were
N = 108, pagesize = 4096, as = 4 (float attributes).

6.3.2 Analysis of probabilistic search

Fig. 10 d) and e) also compare probabilistic search
with a confidence threshold of 0% (the worst case in
terms of I/O) against a plain columnwise clustered in-
dex. From those quantities the speedup rates depicted
in Fig. 11 can be calculated. The maximum speedup
we can hope for with b = 16,as = 4 is (ﬁfgz% = 8.
As expected, speedup is consistently close to the max-
imum, though not constant, due to the same reasons
already stated in the analysis of the minmax index.

7 Conclusions

Let us now summarize in which areas of the parame-
ter space the discussed indexes work well. The three
studied parameters were: query dimensionality, result

. - Dimensionalit
Selectivif Cardinali Low |Mediurh High
Low |wm G
Low | Medium QJ
High |(er [C—T-n —))
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Medium|_Medium|\
High (P C__oEl )
Low || }
High | Medium|\
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C

E... Ext. Pyramid Tree  M... Minmax index
F... Foreign Pyramid TreeQP... Quantile Index Prob. See
C... Colwise Clust. Index QE... Quantile Index Exact Se¢

Figure 12: Parameter space covered

selectivity and cardinality of attribute domain. Figure
12 shows a simplified map, inaccurate by necessity.
For details see the previous sections. The columnwise
clustered index is applicable for many use cases. The
minmax and quantile index support special use cases
where they improve on the columnwise clustered index.
The foreign pyramid tree enriches the applicability of
the extended pyramid tree.

We studied physical database design for OLAP
range queries. A useful DBMS should support the con-
tinous spectrum from low to high dimensional range
queries with small to large selectivities operating on
low to high cardinality attribute domains, a problem
not solvable by one single index structure. A set of
heuristics was collected: multidimensional indexes are
good for queries on most of the indexed dimensions,
clustered files are good for queries on few dimensions,
lossy compression can be useful for pruning, as well as
other heuristics. We then suggested judiciously com-
bining these observations with the state of the art
in multidimensional indexes, bitmap indexes, lossily-
compressed indexes, and others, to provide a design
that supports a broad variety of range queries. Our
technique is a hybrid composed of a variant of the ex-
tended pyramid tree, columnwise clustering, minmax
based lossless and bin based lossy compression. This
combination offers advantages over individual indexes,
as the advantages of each structure can be multiplied.

Our building blocks improve on their ancestors in
several ways. Whereas the (extended) pyramid tree is
limited to queries close to exact range queries, the for-
eign pyramid tree can effectively be used for exact and
partial range queries without duplicating data objects.
For low and medium cardinality attribute domains,
the minmax index shows strong speedups over a plain
columnwise clustered index. Next, the approximate
index attacked the problems caused by high cardinal-
ity attribute domains. It is a framework modelling the
constraints under which any lossily compressed index
operates when obtaining both probabilistic and exact
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answers,

regardless of the underlying implementation.

Last, a concrete implementation of an approximate in-
dex was proposed, the quantile index. For probabilistic
search it shows strong speedup rates over a column-
wise clustered index. For exact seach it can often but
not always contribute moderate to large speedups. All
index data structures are particularly designed to a)
complement each other and b) to be combinable in a
filter pipeline.

Ongoing work focusses on combining the individual
cost models to establish global cost models for global

execution plans.

Further papers will report on the

combined power of this approach. We are currently
implementing an OLAP warehouse for the high en-
ergy physics experiment NA48 at CERN. Detailed ex-
perimental and production results will be published as
soon as available.
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